CCD和CMOS相机的差异
1成像过程
CMOS 与CCD图像传感器光电转换的原理相同,他们主要的差别在于信号的读出过程不同;由于CCD仅有一个(或少数几个)输出节点统一读出,其信号输出的一致性非常好;而CMOS 芯片中,每个像素都有各自的信号放大器,各自进行电荷-电压的转换,其信号输出的一致性较差。但是CCD 为了读出整幅图像信号,要求输出放大器的信号带宽较宽,而在CMOS 芯片中,每个像元中的放大器的带宽要求较低,大大降低了芯片的功耗,这就是CMOS芯片功耗比CCD 要低的主要原因。尽管降低了功耗,但是数以百万的放大器的不一致性却带来了更高的固定噪声,这又是CMOS 相对CCD 的固有劣势。
2集成性
从制造工艺的角度看,CCD 中电路和器件是集成在半导体单晶材料商,工艺较复杂,世界上只有少数几家厂商能够生产CCD 晶元,如DALSA、SONY、松下等。CCD 仅能输出模拟电信号,需要后续的地址译码器、模拟转换器、图像信号处理器处理,并且还需要提供三组不同电压的电源同步时钟控制电路,集成度非常低。而CMOS是集成在被称作金属氧化物的版单体材料上,这种工艺与生产数以万计的计算机芯片和存储设备等半导体集成电路的工艺相同,因此声场CMOS 的成本相对CCD 低很多。同时CMOS 芯片能将图像信号放大器、信号读取电路、A/D 转换电路、图像信号处理器及控制器等集成到一块芯片上,只需一块芯片就可以实现相机的所有基本功能,集成度很高,芯片级相机概念就是从这产生的。随着CMOS 成像技术的不断发展,有越来越多的公司可以提供高品质的CMOS 成像芯片,包括:Micron、 CMOSIS、Cypress等。
3速度
在速度上CCD 采用逐个光敏输出,只能按照规定的程序输出,速度较慢。CMOS 有多个电荷-电压转换器和行列开关控制,读出速度快很多,目前大部分500fps 以上的高速相机都是CMOS 相机。此外CMOS 的地址选通开关可以随机采样,实现子窗口输出,在仅输出子窗口图像时可以获得更高的速度。
4噪声
由于CCD 技术发展较早,比较成熟,采用PN 结或二氧化硅(SiO2)隔离层隔离噪声,成像质量相对CMOS 光电传感器有一定优势。由于CMOS 图像传感器集成度高,各元件、电路之间距离很近,干扰比较严重,噪声对图像质量影响很大。近年,随着CMOS 电路消噪技术的不断发展,为生产高密度的CMOS 图像传感器提供了良好的条件。
5成像原理
首先来看一下CMOS:
CMOS(Complementary Metal-Oxide Semiconductor)即互补性金属氧化物半导体,其在微处理器、闪存和特定用途集成电路(ASIC)的半导体技术上占有重要的地位。CMOS和CCD一样都是可用来感受光线变化的半导体。CMOS主要是利用硅和锗这两种元素所作成的半导体,通过CMOS上带负电和带正电的晶体管来实现基本的功能的。这两个互补效应所产生的电流即可被处理芯片记录和解读成影像。
CMOS结构相对简单,与现有的大规模集成电路生产工艺相同,从而生产成本可以降低。从原理上讲,CMOS的信号是以点为单位的电荷信号,而CCD是以行为单位的电流信号,前者更为敏感,速度也更快,更为省电。现在好的CMOS并不比一般CCD差,但目前CMOS技术发展还不成熟,这种高质量的CMOS还只应用于专业级别的数码相机上,许多低档入门型的数码相机使用的是廉价低档的CMOS,其成像质量比较差。大的缺点就是太容易出现噪点, 这主要是因为早期的设计使CMOS在处理快速变化的影像时,由于电流变化过于频繁而会产生过热的现象。所以目前如果购买消费级数码相机还是要选择以CCD为影像传感器的。
CCD的成像我们先来看一下下面的这张图
从上图可以看出成像过程如下:
1、用相机拍摄景物时,景物反射的光线通过相机的镜头透射到CCD上。
2、当CCD曝光后,光电二极管受到光线的激发释放出电荷,感光元件的电信号便由此产生。
3、CCD控制芯片利用感光元件中的控制信号线路对光电二极管产生的电流进行控制,由电流传输电路输出,CCD会将一次成像产生的电 信号收集起来,统一输出到放大器。
4、经过放大和滤波后的电信号被送到A/D,由A/D将电信号(此时为模拟信号)转换为数字信号,数值的大小和电信号的强度即电压的高 低成正比。这些数值其实就是图像的数据了。
5、不过单依靠第4步所得到的图像数据还不能直接生成图像,还要输出到数字信号处理器(DSP)。在DSP中,这些图像数据被进行色 彩校正、白平衡处理(视用户在相机中的设定而定)等后期处理,编码为相机所支持的图像格式、分辨率等数据格式,然后才会被存储为图像文件。
6、图像文件就被写入到存储器上(内置或外置存储器)。
CCD相机
目前市面上大部分相机使用的影像传感器是CCD(Chagre Couled Device),即电荷耦合器,是一种特殊的半导体材料。它是由大量独立的光敏元件组成,这些光敏元件通常是按矩阵排列的,通常以百万像素(megapixel)为单位。相机规格中的多少百万像素,指的就是CCD的分辨率,也就是指这台相机的CCD上有多少感光组件。光线透过镜头照射到CCD上,并被转换成电荷,每个元件上的电荷量取决于它所受到的光照强度。当你按动快门,CCD将各个元件的信息传送到A/D上,模拟电信号经过A/D处理后变成数字信号,数字信号以一定格式压缩后存入缓存内,此时一张数码照片就诞生了。CCD通常用在相机、DV和扫描仪上,作为感光的组件。
(CCD以及组件放大图片)
传统CCD排列为矩阵,然而这样的作法却限制了在有效面积内提升分辨率的能力。1/1.8CCD的理想值大约为六百万像素,而在成本和制造良品率的考虑下降低至四百万是合理值。因此,有些厂商很聪明的想出改变CCD的排列顺序,藉此想在此范围内增强分辨率。由此产生了一种比较特殊的CCD,叫SUPER CCD。它是富士公司创造的,并没有采用常规正方形二极管,而是使用了一种八边形的二极管,像素是以蜂窝状形式排列,并且单位像素的面积要比传统的CCD大。将像素旋转45度排列的结果是可以缩小对图像拍摄无用的多余空间,光线集中的效率比较高,效率增加之后使感光性、信噪比和动态范围都有所提高。
CCD的结构
很多用户以为CCD只是一块芯片而已。但实际上CCD是和处理器做成一个完整的组件(见下图)。这样的设计可以确保DC的组件化,降低维修和检查的成本(也就是说可以运用计算机检测组件运作,一旦自我检查出特定组件问题,直接更换整个组件,而不需要再一个个去测试单体,简单省事,这也是DC维修费高的一个原因)
如果切开CCD,会发现CCD的结构就像三明治一样,第一层是微型镜头,第二层是分色滤色片,以及第三层感光汇流片。为什么“镜头”会直接做在CCD上呢?其实,这应该是英语翻译上的问题,具体原因我也不太清楚。ON-CHIP MICRO LENS是1980年初由SONY发展出来的技术。这是为了有效提升CCD的像素,又要确保单一像素持续缩小以维持CCD的标准体积。因此必须扩展单一像素的受光面积。但利用提高开口率来增加受光面积反而使画质变差。所以开口率只能提升到一定的极限,否则CCD将成为劣质品。为改善这个问题,SONY率先在每一个感光二极管上(单一像素)装置了微小镜片。这个设计就像是帮CCD挂上眼镜一样,感光面积不再因为传感器的开口面积而决定,而改由微型镜片的表面积来决定。如此一来,可以同时兼顾单一像素的大小,又可在规格上提高了开口率,使感光度大幅提升。CCD的第二层是分色滤色片,目前有两种分色方式,一是RGB原色分色法,另一个则是CMYG补色分色法,这两种方法各有利弊。不过以产量来看,原色和补色CCD的比例大约在2:1左右。原色CCD的优势在于画质锐利,色彩真实,但缺点则是噪声问题。因此一般采用原色CCD的DC,在ISO感光度上多半不会超过400。相对的补色CCD多了一个Y黄色滤色器,在色彩的分辨上比较仔细,但却牺牲了部分分辨率,而在ISO值上,补色CCD可以容忍较高的感度,一般都可设定在 800以上。(关于这两种分色方式见下图)
CCD的第三层是感光汇流片,这层主要是负责将穿透滤色层的光源转换成电子信号,并将信号传送到影像处理芯片,将影像还原。
(来源:网络,版权归原作者)